null

Extended 30-day returns on any purchases made in December!
We will be closed 25 & 26 December and 1 & 2 January

Ieaskul F. Mobenthey Swoop Eurorack Cycling Function Generator Module

Ieaskul F. Mobenthey

£237.00
In stock.
Adding to cart… The item has been added
Shipping info

The Swoop module is essentially a bound/bounce control voltage processor, in the lineage of such multi-purpose tools as the “Serge Dual Universal Slope Generator”. Like that module, Swoop responds to:

  • input voltages that set target boundaries in voltage
  • control voltages for angle of both the down and up segments of the waveform
  • trigger voltages that perform a single “swoop” up or down.

It differs, however from the DUSG, in that it truly is a free-running oscillator, that will bounce between any given boundaries; bounds take a more correlative role in deciding the frequency. In fact, it is already running when given zero input, bouncing infinitesimally at a very high resultant frequency. This oscillator was conceived as a sort of triangular answer to the operation of filters, that take an input and resonate damp. Damping, in Swoop, results in an ever higher and higher frequency, thus fulfilling the bounds/bounce concept. Inspired by the idea of polarity, there are actually two triggers, for upward swoop and downward swoop, or even both ways consecutively.

Swoop is an 8HP Eurorack module that runs on +12 and -12 volts. Attach power connector positive to “+” and negative to “-”. Failure to follow proper power polarity will result in instant destruction of unit.

Looking at the front panel of Swoop, note that inputs are marked by copper fill. The two bounds inputs each control both upper and lower boundaries. They do this by rectification. With no connections, they are set at zero, and thus as mentioned already, oscillator is squeezed into this infinitesimal space. If one connection is made, the oscillator will bounce up and down between zero and the voltage, whether it be positive or negative. Likewise, with two inputs, the oscillator bounces between whichever is highest and whichever is lowest.

Up in the bounds zone, there is a range switch. When in middle position, Swoop runs at a standard audio rate. Pointing downward is a low audio rate, and pointing upwards is a definite CV, lowest rate.

The triangular output is the position of the wave, and square is the mechanical signal to go up or down, a good way to hear its frequency.

The bounce section is a very standard sort of analog math block. There is a bounce “basis” knob for both down and up slopes, to set the base rate. Above it, there is an attenuverter, marked by a bow-tie, to process the modulation inputs, at top. In addition to the down and up inputs, there is a “both” input, in the middle for convenience. That input feeds into both the down and up inputs, which have separate attenuverters. An attenuverter works like this: at noon the modulations are nulled out, they have no effect; clockwise from there they increase in intensity, with positive input meaning “more”; to the counter-clockwise direction, modulations increase as well, but with negative input meaning “more”. This knob is essential to controlling how much, and in which direction, your modulations apply.

At the very bottom of the module is the triggered swoop section. As mentioned above, there are two swoops, negative-going and positive going. The trigger responds to a positive transition, crossing one diode drop above ground (one volt). This should work with pretty much any gate signal but also analog signals larger than two volts peak to peak. The outputs here are gate signals, from zero to twelve volts, indicating that the swoop has finished its duty cycle. These can be used to trigger the other swoop to make a chain of different polarity swoops, or connected in “x” formation, generating a continuous oscillation. To make a recirculating positive swoop, you can connect its output to its input, likewise for a recirculating negative swoop. The analog swoop voltage is “read” at the triangular output, up top. They cause the signal to travel once to the eight (or negative eight) volt mark.

Lineage of Swoop

I guess I first worked on swoop in the Dogslit, and the associated Conrad Papers. These were all paper circuits, originally designed for controlling the light boxes of Dan Conrad. Each swoop was like a unit cell, creating this triangular event, and then triggering another swoop; montages of loops and other topographies could be constructed from multiple swoops. These then controlled a Dogvoice (to be released by Ieaskul in Eurorack form); the multiple overlapping events resulted in unpredictable growls and barks, like how a dog wants to think nomadically.

There were swoops and anti-swoops, meaning some went up and some went down. Physically the circuits were separate. Around this time I realized how much they paralleled the DUSG, and how Serge musicians will use that module as well to create montages of cellular units that trigger each other.

Fast forward about six years, at the development of the Shnth device, a digital synthesizer. It used an internal language to process, and indeed emulate analog functions. The opcode “swoop” was designed to enable granular synthesis with triangular events, but it also happened to emulate the primitive piezo flex gesture: press down and release result in an upward swoop immediately followed by a downward swoop. It worked this way in the default “dirac” mode, or using signed math. But it also had an “arab” mode wherein swoop operated with just one positive going triangle. It so happened that signed math generated this unique “double bubble” sound from the positive swoop to negative swoop crossing zero.

There was one more purposing of the term “swoop” in code, as a synthetic response function for enemy chubes in the game “Mikey Walker”. Chubes respond to punches by wobbling and then falling if punched in time with their resonance: that's the aim of the game. So I was seeking to provide another type of response than the standard (but totally wonderful) resonant filter. In a separate chapter I can describe how I used Anthony Braxton's tri-centric logics as a brainstorm for the idea of using a triangle wave as a resonant filter. Essentially it needs to have an input, not a modulation input but an input as like a filter, and it needs to damp energy down by oscillating it. Of course, when a triangle wave gets bigger and smaller its frequency changes, according to the bounds/bounce concept; this helped enrich gameplay with a new resonant strategy for enemies.

So in Ieaskul's swoop, we have several threads of analog, emulation, and conceptual coming together in one module. There is biphasic support, swoop and anti-swoop are not separated anymore; but along with signed math also comes unsigned math. There is the emulation of gestural flex, in Newton's own “equal and opposite reactions”. And there is the possibility of a “resonant triangle” and what happens when it is damped: Ieaskul's masthead, the paradox wave.

How much is my shipping?

Shipping is automatically calculated before you submit your payment information. Simply add items to your cart and proceed to the checkout page, where you'll be offered shipping options and their prices. In the UK it's normally around £4 for order values under £150, and free above that. Shipping to mainland EU is typically between £7 and £20, depending on the shipping method and the size and weight of the order.

Do you ship to my country?

Almost certainly - the site will give you an estimate of shipping costs if you add an item to the cart and then enter your country and postcode. If you have specific requirements (such as if you prefer UPS over FedEx, for example) then let us know in advance and we'll try to work something out for you.

Shipping methods

We use a combination of Parcelforce, DPD, Royal Mail and UPS for the UK, and for international orders it's either Royal Mail, UPS, DHL or FedEx depending on where you are in the world. If you have a particular preference then try to let us know BEFORE you order so we can look into it for you. Please note that there may occasionally be additional shipping charges if you live in a remote area, depending on what surcharges are applied by the shipper. We'll get in touch to discuss this with you in such cases.

Dispatch times

For UK orders, we normally dispatch the same working day if we get the order before 15:00. If you have a really urgent situation then of course drop us an email before ordering and we'll always do our absolute best to accommodate you.

For international orders, we normally dispatch the same day if we get the order before 13:00 but again, occasionally it might be the next day before we can send it out, and sometimes FedEx or UPS may come a little earlier than scheduled which would also push an order into the next day.

Shipping times

Since April 2020 the couriers we use have suspended guarantees for shipping times, so even though we're paying them for priority services - 24-48 hours for most of the world - in practice it's often an extra day on top and sometimes it can be longer.

There is absolutely nothing we can do about this unfortunately. If you are outside the UK and it's a life-or-death situation where you absolutely MUST have that passive mult for the next day then... it may be better to find a local supplier.

Saturday shipping

If you're in the UK and you order before 15:30 on a Friday then we can send something for a Saturday delivery (NB: this applies to UK mainland addresses only). The success rate with DPD is about 95% so it's worth a punt most of the time. Please note that if you select Saturday shipping on an order placed earlier in the week, we'll wait until Friday to ship it.

Pre-orders

If a product is listed as a pre-order, it means we've ordered it from the supplier but it's not physically in stock yet. The product listing will include an estimated shipping date based on the best information we have from the supplier, but do bear in mind this is subject to change and is not a guaranteed date.

If you place an order containing a mixture of in-stock and pre-order items, we'll normally hold off on shipping anything until the pre-order item(s) have arrived, rather than splitting it into multiple shipments. If you need the in-stock items sooner, we'd recommend placing separate orders. As always, please get in touch if you have questions.

Product Overview

The Swoop module is essentially a bound/bounce control voltage processor, in the lineage of such multi-purpose tools as the “Serge Dual Universal Slope Generator”. Like that module, Swoop responds to:

  • input voltages that set target boundaries in voltage
  • control voltages for angle of both the down and up segments of the waveform
  • trigger voltages that perform a single “swoop” up or down.

It differs, however from the DUSG, in that it truly is a free-running oscillator, that will bounce between any given boundaries; bounds take a more correlative role in deciding the frequency. In fact, it is already running when given zero input, bouncing infinitesimally at a very high resultant frequency. This oscillator was conceived as a sort of triangular answer to the operation of filters, that take an input and resonate damp. Damping, in Swoop, results in an ever higher and higher frequency, thus fulfilling the bounds/bounce concept. Inspired by the idea of polarity, there are actually two triggers, for upward swoop and downward swoop, or even both ways consecutively.

Swoop is an 8HP Eurorack module that runs on +12 and -12 volts. Attach power connector positive to “+” and negative to “-”. Failure to follow proper power polarity will result in instant destruction of unit.

Looking at the front panel of Swoop, note that inputs are marked by copper fill. The two bounds inputs each control both upper and lower boundaries. They do this by rectification. With no connections, they are set at zero, and thus as mentioned already, oscillator is squeezed into this infinitesimal space. If one connection is made, the oscillator will bounce up and down between zero and the voltage, whether it be positive or negative. Likewise, with two inputs, the oscillator bounces between whichever is highest and whichever is lowest.

Up in the bounds zone, there is a range switch. When in middle position, Swoop runs at a standard audio rate. Pointing downward is a low audio rate, and pointing upwards is a definite CV, lowest rate.

The triangular output is the position of the wave, and square is the mechanical signal to go up or down, a good way to hear its frequency.

The bounce section is a very standard sort of analog math block. There is a bounce “basis” knob for both down and up slopes, to set the base rate. Above it, there is an attenuverter, marked by a bow-tie, to process the modulation inputs, at top. In addition to the down and up inputs, there is a “both” input, in the middle for convenience. That input feeds into both the down and up inputs, which have separate attenuverters. An attenuverter works like this: at noon the modulations are nulled out, they have no effect; clockwise from there they increase in intensity, with positive input meaning “more”; to the counter-clockwise direction, modulations increase as well, but with negative input meaning “more”. This knob is essential to controlling how much, and in which direction, your modulations apply.

At the very bottom of the module is the triggered swoop section. As mentioned above, there are two swoops, negative-going and positive going. The trigger responds to a positive transition, crossing one diode drop above ground (one volt). This should work with pretty much any gate signal but also analog signals larger than two volts peak to peak. The outputs here are gate signals, from zero to twelve volts, indicating that the swoop has finished its duty cycle. These can be used to trigger the other swoop to make a chain of different polarity swoops, or connected in “x” formation, generating a continuous oscillation. To make a recirculating positive swoop, you can connect its output to its input, likewise for a recirculating negative swoop. The analog swoop voltage is “read” at the triangular output, up top. They cause the signal to travel once to the eight (or negative eight) volt mark.

Lineage of Swoop

I guess I first worked on swoop in the Dogslit, and the associated Conrad Papers. These were all paper circuits, originally designed for controlling the light boxes of Dan Conrad. Each swoop was like a unit cell, creating this triangular event, and then triggering another swoop; montages of loops and other topographies could be constructed from multiple swoops. These then controlled a Dogvoice (to be released by Ieaskul in Eurorack form); the multiple overlapping events resulted in unpredictable growls and barks, like how a dog wants to think nomadically.

There were swoops and anti-swoops, meaning some went up and some went down. Physically the circuits were separate. Around this time I realized how much they paralleled the DUSG, and how Serge musicians will use that module as well to create montages of cellular units that trigger each other.

Fast forward about six years, at the development of the Shnth device, a digital synthesizer. It used an internal language to process, and indeed emulate analog functions. The opcode “swoop” was designed to enable granular synthesis with triangular events, but it also happened to emulate the primitive piezo flex gesture: press down and release result in an upward swoop immediately followed by a downward swoop. It worked this way in the default “dirac” mode, or using signed math. But it also had an “arab” mode wherein swoop operated with just one positive going triangle. It so happened that signed math generated this unique “double bubble” sound from the positive swoop to negative swoop crossing zero.

There was one more purposing of the term “swoop” in code, as a synthetic response function for enemy chubes in the game “Mikey Walker”. Chubes respond to punches by wobbling and then falling if punched in time with their resonance: that's the aim of the game. So I was seeking to provide another type of response than the standard (but totally wonderful) resonant filter. In a separate chapter I can describe how I used Anthony Braxton's tri-centric logics as a brainstorm for the idea of using a triangle wave as a resonant filter. Essentially it needs to have an input, not a modulation input but an input as like a filter, and it needs to damp energy down by oscillating it. Of course, when a triangle wave gets bigger and smaller its frequency changes, according to the bounds/bounce concept; this helped enrich gameplay with a new resonant strategy for enemies.

So in Ieaskul's swoop, we have several threads of analog, emulation, and conceptual coming together in one module. There is biphasic support, swoop and anti-swoop are not separated anymore; but along with signed math also comes unsigned math. There is the emulation of gestural flex, in Newton's own “equal and opposite reactions”. And there is the possibility of a “resonant triangle” and what happens when it is damped: Ieaskul's masthead, the paradox wave.

Technical Specs

Shipping Details

How much is my shipping?

Shipping is automatically calculated before you submit your payment information. Simply add items to your cart and proceed to the checkout page, where you'll be offered shipping options and their prices. In the UK it's normally around £4 for order values under £150, and free above that. Shipping to mainland EU is typically between £7 and £20, depending on the shipping method and the size and weight of the order.

Do you ship to my country?

Almost certainly - the site will give you an estimate of shipping costs if you add an item to the cart and then enter your country and postcode. If you have specific requirements (such as if you prefer UPS over FedEx, for example) then let us know in advance and we'll try to work something out for you.

Shipping methods

We use a combination of Parcelforce, DPD, Royal Mail and UPS for the UK, and for international orders it's either Royal Mail, UPS, DHL or FedEx depending on where you are in the world. If you have a particular preference then try to let us know BEFORE you order so we can look into it for you. Please note that there may occasionally be additional shipping charges if you live in a remote area, depending on what surcharges are applied by the shipper. We'll get in touch to discuss this with you in such cases.

Dispatch times

For UK orders, we normally dispatch the same working day if we get the order before 15:00. If you have a really urgent situation then of course drop us an email before ordering and we'll always do our absolute best to accommodate you.

For international orders, we normally dispatch the same day if we get the order before 13:00 but again, occasionally it might be the next day before we can send it out, and sometimes FedEx or UPS may come a little earlier than scheduled which would also push an order into the next day.

Shipping times

Since April 2020 the couriers we use have suspended guarantees for shipping times, so even though we're paying them for priority services - 24-48 hours for most of the world - in practice it's often an extra day on top and sometimes it can be longer.

There is absolutely nothing we can do about this unfortunately. If you are outside the UK and it's a life-or-death situation where you absolutely MUST have that passive mult for the next day then... it may be better to find a local supplier.

Saturday shipping

If you're in the UK and you order before 15:30 on a Friday then we can send something for a Saturday delivery (NB: this applies to UK mainland addresses only). The success rate with DPD is about 95% so it's worth a punt most of the time. Please note that if you select Saturday shipping on an order placed earlier in the week, we'll wait until Friday to ship it.

Pre-orders

If a product is listed as a pre-order, it means we've ordered it from the supplier but it's not physically in stock yet. The product listing will include an estimated shipping date based on the best information we have from the supplier, but do bear in mind this is subject to change and is not a guaranteed date.

If you place an order containing a mixture of in-stock and pre-order items, we'll normally hold off on shipping anything until the pre-order item(s) have arrived, rather than splitting it into multiple shipments. If you need the in-stock items sooner, we'd recommend placing separate orders. As always, please get in touch if you have questions.